Copied to
clipboard

G = C23.25D8order 128 = 27

4th non-split extension by C23 of D8 acting via D8/C8=C2

p-group, metabelian, nilpotent (class 4), monomial

Aliases: C23.25D8, (C2×C16)⋊14C4, C4(C163C4), C4(C164C4), C8.31(C4⋊C4), C8.16(C2×Q8), C4.7(C2×Q16), (C2×C8).51Q8, C16.20(C2×C4), C163C413C2, C164C413C2, (C2×C8).278D4, (C2×C4).170D8, (C2×C4).41Q16, C2.2(C4○D16), C8.53(C22×C4), C4.24(C2.D8), C22.59(C2×D8), (C2×C8).500C23, (C2×C16).80C22, (C22×C16).13C2, (C22×C4).588D4, C2.D8.148C22, C22.13(C2.D8), (C22×C8).553C22, C23.25D4.4C2, C4.52(C2×C4⋊C4), (C2×C4)(C164C4), (C2×C4)(C163C4), C2.13(C2×C2.D8), (C2×C8).226(C2×C4), (C2×C4).764(C2×D4), (C2×C4).144(C4⋊C4), SmallGroup(128,890)

Series: Derived Chief Lower central Upper central Jennings

C1C8 — C23.25D8
C1C2C4C2×C4C2×C8C22×C8C22×C16 — C23.25D8
C1C2C4C8 — C23.25D8
C1C2×C4C22×C4C22×C8 — C23.25D8
C1C2C2C2C2C4C4C2×C8 — C23.25D8

Generators and relations for C23.25D8
 G = < a,b,c,d,e | a2=b2=c2=1, d8=c, e2=b, ab=ba, eae-1=ac=ca, ad=da, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=cd7 >

Subgroups: 140 in 76 conjugacy classes, 52 normal (18 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, C23, C16, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C4.Q8, C2.D8, C2×C16, C2×C16, C42⋊C2, C22×C8, C163C4, C164C4, C23.25D4, C22×C16, C23.25D8
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C4⋊C4, D8, Q16, C22×C4, C2×D4, C2×Q8, C2.D8, C2×C4⋊C4, C2×D8, C2×Q16, C2×C2.D8, C4○D16, C23.25D8

Smallest permutation representation of C23.25D8
On 64 points
Generators in S64
(17 25)(18 26)(19 27)(20 28)(21 29)(22 30)(23 31)(24 32)(49 57)(50 58)(51 59)(52 60)(53 61)(54 62)(55 63)(56 64)
(1 36)(2 37)(3 38)(4 39)(5 40)(6 41)(7 42)(8 43)(9 44)(10 45)(11 46)(12 47)(13 48)(14 33)(15 34)(16 35)(17 59)(18 60)(19 61)(20 62)(21 63)(22 64)(23 49)(24 50)(25 51)(26 52)(27 53)(28 54)(29 55)(30 56)(31 57)(32 58)
(1 9)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15)(8 16)(17 25)(18 26)(19 27)(20 28)(21 29)(22 30)(23 31)(24 32)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)(49 57)(50 58)(51 59)(52 60)(53 61)(54 62)(55 63)(56 64)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
(1 56 36 30)(2 55 37 29)(3 54 38 28)(4 53 39 27)(5 52 40 26)(6 51 41 25)(7 50 42 24)(8 49 43 23)(9 64 44 22)(10 63 45 21)(11 62 46 20)(12 61 47 19)(13 60 48 18)(14 59 33 17)(15 58 34 32)(16 57 35 31)

G:=sub<Sym(64)| (17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64), (1,36)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,33)(15,34)(16,35)(17,59)(18,60)(19,61)(20,62)(21,63)(22,64)(23,49)(24,50)(25,51)(26,52)(27,53)(28,54)(29,55)(30,56)(31,57)(32,58), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,56,36,30)(2,55,37,29)(3,54,38,28)(4,53,39,27)(5,52,40,26)(6,51,41,25)(7,50,42,24)(8,49,43,23)(9,64,44,22)(10,63,45,21)(11,62,46,20)(12,61,47,19)(13,60,48,18)(14,59,33,17)(15,58,34,32)(16,57,35,31)>;

G:=Group( (17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64), (1,36)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,33)(15,34)(16,35)(17,59)(18,60)(19,61)(20,62)(21,63)(22,64)(23,49)(24,50)(25,51)(26,52)(27,53)(28,54)(29,55)(30,56)(31,57)(32,58), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,56,36,30)(2,55,37,29)(3,54,38,28)(4,53,39,27)(5,52,40,26)(6,51,41,25)(7,50,42,24)(8,49,43,23)(9,64,44,22)(10,63,45,21)(11,62,46,20)(12,61,47,19)(13,60,48,18)(14,59,33,17)(15,58,34,32)(16,57,35,31) );

G=PermutationGroup([[(17,25),(18,26),(19,27),(20,28),(21,29),(22,30),(23,31),(24,32),(49,57),(50,58),(51,59),(52,60),(53,61),(54,62),(55,63),(56,64)], [(1,36),(2,37),(3,38),(4,39),(5,40),(6,41),(7,42),(8,43),(9,44),(10,45),(11,46),(12,47),(13,48),(14,33),(15,34),(16,35),(17,59),(18,60),(19,61),(20,62),(21,63),(22,64),(23,49),(24,50),(25,51),(26,52),(27,53),(28,54),(29,55),(30,56),(31,57),(32,58)], [(1,9),(2,10),(3,11),(4,12),(5,13),(6,14),(7,15),(8,16),(17,25),(18,26),(19,27),(20,28),(21,29),(22,30),(23,31),(24,32),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48),(49,57),(50,58),(51,59),(52,60),(53,61),(54,62),(55,63),(56,64)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)], [(1,56,36,30),(2,55,37,29),(3,54,38,28),(4,53,39,27),(5,52,40,26),(6,51,41,25),(7,50,42,24),(8,49,43,23),(9,64,44,22),(10,63,45,21),(11,62,46,20),(12,61,47,19),(13,60,48,18),(14,59,33,17),(15,58,34,32),(16,57,35,31)]])

44 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G···4N8A···8H16A···16P
order1222224444444···48···816···16
size1111221111228···82···22···2

44 irreducible representations

dim1111112222222
type++++++-++-+
imageC1C2C2C2C2C4D4Q8D4D8Q16D8C4○D16
kernelC23.25D8C163C4C164C4C23.25D4C22×C16C2×C16C2×C8C2×C8C22×C4C2×C4C2×C4C23C2
# reps12221812124216

Matrix representation of C23.25D8 in GL3(𝔽17) generated by

1600
010
0016
,
1600
0160
0016
,
100
0160
0016
,
100
070
005
,
400
005
0100
G:=sub<GL(3,GF(17))| [16,0,0,0,1,0,0,0,16],[16,0,0,0,16,0,0,0,16],[1,0,0,0,16,0,0,0,16],[1,0,0,0,7,0,0,0,5],[4,0,0,0,0,10,0,5,0] >;

C23.25D8 in GAP, Magma, Sage, TeX

C_2^3._{25}D_8
% in TeX

G:=Group("C2^3.25D8");
// GroupNames label

G:=SmallGroup(128,890);
// by ID

G=gap.SmallGroup(128,890);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,-2,112,141,288,352,1123,360,4037,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^8=c,e^2=b,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=c*d^7>;
// generators/relations

׿
×
𝔽